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Abstract. Vector solutions of the Laplace equation are obtained. Their properties and 
possible applications are discussed. The multipole toroidal moments appear naturally in 
this vector basis, removing the mystery oftheir origin. Conditions are found for the non- 
radiation of charge and current densities periodically changing with time. Electromagnetic 
properties of the toroidal solenoid with non-zero helicity. the influence of the latter on 
Aharonov-Bohm scattering, and an alternative viewpoint on the toroidal solenoid with 
non-trivial heiidtv are studied. 

1. Introduction 

Vector spherical harmonics (VSH) and elementary vector potentials (EVP) [1,2], 
closely related to them. are powerful tools for solving radiation [l] and scattering [3] 
problems occurring in optical [4], particle, nuclear [5] and atomic physics [6].  EVP are 
the vector solutions of the Helmholtz equation. Much less is known about the vector 
solutions of the Laplace equation. At first, this seems strange. In fact. as the 
Helmholtz equation in the long-wavelength limit (k-0) transforms into the Laplace 
equation, one may expect the same for its vector solutions. It turns out, however, that 
contributions of EVP corresponding to electric ( E )  and longitudinal ( L )  multipoles 
diverge in the k+O limit. This gave rise to numerous fallacies and controversies in the 
physical literature, some of which have been discussed recently in the review article 
[7]. It is the aim of the present consideration to find the correct limiting procedure for 
the static case. 

For the static case, there are known configurations of charges and currents which, 
being imbedded into the finite region of space S, generate electric and magnetic fields 
vanishing outside S. The typical representatives are electric capacitors and magnetic 
solenoids. Is the same situation possible for the time-dependent charge and current 
densities? Particular examples of that kind were given in [S-lo]. In the present 
consideration, we find general conditions which should satisfy non-radiating charge 
and particle densities. 

A static configuration of the magnetic field enclosed into the finite space region S 
may be characterized by the number of topological invariants which are unchanged 
under an arbitrary continuous deformation of S [Ill. The simplest one is magnetic 
flux. which depends on the number of magnetic lines and their total intensity. The 
next (in complexity) invariant is helicity [12,13], which measures how much the 
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magnetic lines are coupled with each other. The helicity may be different from zero, 
even for a single magnetic line, which should be either knotted or internally twisted in 
this case [14]. Using the superposition of magnetic dipole and toroidal moments we 
construct a toroidal solenoid (TS) with non-zero helicity and investigate how it affects 
charge particle scattering. For the helicity to be physically meaningful, it should be a 
gauge invariant quantity. This requires that the magnetic lines in the vicinity of the 
boundary enclosing the magnetic flux should be parallel to it [12]. Such a property 
holds for the solenoids and this in turn justifies the use of helicity for their description. 

The plan of our exposition is as follows. The main facts concerning VSH and EVP are 
collected in section 2. It is shown at the beginning of section 3 that the transition to the 
k+O limit in the solutions of the Helmholtz equation does not always give all the 
solutions of the Laplace equation. To remove this insufficiency the orthonormal 
vector basis of the Laplace equation is constructed in section 3. Its properties are 
discussed and the simplest physical applications are given. The multipole toroidal 
moments appear naturally in this basis and this removes the mystery of their origin. 
The conditions under which the periodical charge and current densities generate 
electromagnetic field strengths confined to the finite space region are found. The 
electromagnetic properties of TS with non-zero helicity, the influence of TS twisting on 
the Aharonov-Bohm scattering, and an alternative viewpoint on TS with non-zero 
helicity are discussed in section 4. 

2. Main facts concerning elementary vector potentials and vector spherical 
harmonics 

Consider the non-uniform wave equation for the scalar and vector potentials (VP) 

4n 
(h  -$$) q4 = -4np (A - $ $)A = - 7 j 

with charge and current densities periodically changing with time 

p =p,, exp(-iwt) j = j )  exp(-iot). 

Clearly, A and @ should be of the form 
A =A,, exp( -iot) @ = @,, exp( - iot) . (2.2) 

Then 
4n 

(A + k')A,,= - - j ,  C (A+  k')@"= - 4 ~ ~ 1 , .  (2.3) 

@,, = 4nik 2 h,Y;"q;" 

We assume that p and j are confined to the finite space region S. Outside it 

(2.4) 

1 
A=-4nik~A;"(z)b;"(r). C 
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are the spherical Bessel and Hankel functions, r= Y;'(e,cp) are the usual spherical 
harmonics, and q;'= I j1Y;''3p~l dV. 

The A;'@) are the so called elementary vector potentials (EVP). The values of 
r = E ,  L and M in them correspond to the electric, longitudinal and magnetic 
multipoles. The AY(z) being the solutions of the Helmholtz equation are given by 

1 1 
k A;'(L) = - VhlY;' Ay(M) = 7 LhlY;' 

I(l+ 1) 

1 1  
rot ( L h I r  ) L = - i(rx V ) .  A;"(E) =z V q T i j  

Another set of EVP Bf(z)  (non-singular at the origin) is obtained if we change the 
spherical Hankel functions hl to the Bessel ones j l .  The multipole formfactors b;"(z) 
occurring in (2.5) depend on the current distribution inside S 

b;'(z) = B;'(z)* . j,, dV. (2.7) s 
The EVP have a number of nice properties. They are orthogonal on the sphere of 

arbitrary radius 

A;'(z) .A~'(z ')* dQ =constant alp 6+ (2.8) I 
They are the eigenfunctions of the total angular momentum and its third projection 

J2A;'(z)= [ ( I +  l)Ay(z) J ,  . AY(z) = m . A;'(z) 

(see [l] for the definition of J ) .  The following differential relations between EVP are 
valid: 

rotA;"(M) = id;'(/?) rotA;'(E) = -idy(M). (2.9) 
The same equations occur for B;'(z). The EVP form a complete system. An arbitrary 
vector function can be developed over them. An alternative representation of VP is its 
expansion over the vector spherical harmonics (VSH) 

(2.10) 

Here J;=JjAkr)Y?* dV. The VSH are defined as vectorially coupled quantities of 
the usual spherical harmonics and the unit spherical vectors n,,(qI=nz, 
n, I = i (n, * in.")/VT) 

(2.11) 

Here C(Ilml[2m2; Im) are the usual Clebsch-Gordan coefficients. The VSH are ortho- 
normal 

Y; . Y$* dQ = SrSlp * 6 ,,,,,,*. I 
They are the eigenfunctions of the orbital and total angular moments squares and of 
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the third projection of the latter: 

PY;? = I(1 -k 1) Y;; J2Y;=j(j+ 1)Y;:. J,Y;?=mY;?. 

It is clear that h,Y$ and jlY$ are the vector solutions of the Helmholtz equation. This 
suggests that EVP may be expressed in terms of the VSH [l]: 

A;'(M) = - hrYr 

A;"(E) = ( ~ I z -  1Yf'- I - d h , +  ,t'T1+ I)/- 

A ; " ( L ) = ( ~ h l + , Y C ; + , + d h , _ , Y ~ l _ , ) l ~ .  (2.12) 

The EVP B y ( t )  are obtained if one takes in these relations j l(kr) instead of h,(kr). The 
advantage of EVP over VSH is that EVP may be obtained by the action of the V and L 
operators on the solutions of the scalar Helmholtz equation. 

3. Vector solutions of the Laplace equation 

It is our first goal to find an analogue of the EVP expansion for the Laplace equation. 
At first this problem seems to be almost trivial. In fact, as the Helmholtz equation 
(2.3) transforms in the k+O limit into the Poisson one, one expects that it is enough to 
find the solution of the Helmholtz equation and then take the limit k+O. The 
following counterexample shows that the direct transition to the limit k+O does not 
exhaust all the vector solutions of the Laplace equation. 

Counterexample. Suppose we seek for the periodically changing with time charge and 
current densities confined to the finite space region S, and generating the electromag- 
netic strengths E ,  H vanishing outside S. To find conditions for this we use the curl 
operator on both sides of (2.5). Then 

As Ay(E)  and A?(M) are linear, independent and orthogonal, the conditions for the 
disappearance of H are 

by@) = b!"(M) = 0. (3.1) 
The physical meaning of these equations is clarified in the appendix. 
The corresponding VP is given by 

I 4ni 
ck A = - V E  h,?';' V(jlYy*).jdV. (3.2) 

(The overall periodical factor exp(-iof) is dropped in this and other evident cases);A 
and CP satisfy the Lorentz gauge condition div A + 6 / c =  0. It is easy to check that the 
electric field E =  -V@-+A also disappears outside S. Using the continuity equation 
div j+ p = 0 the VP may be transformed into 

1 
ik A =-V. Q. (3.3) 
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Consider the case when kr<<l. This means that the field observations are made at 
distances which are much smaller than the wavelength 1=2n/k .  On the other hand, 
we do not expand the overall time factor exp(-iwt). This permits us to observe the 
electromagnetic field at the given distance from the source at different times. Thus, we 
have 

1 
tk 

A =:exp(-iwt)VQ0 @ = Qa exp(-iwt) 

(3.4) 

To obtain the physical potentials one should take the real parts from 

1 
k APh, = - - sin wtVDO. (3.5) QPhYS = @a 'COS W t  

For small times (wt<<l) this reduces to 

QPhY, = Qo A,,,= -ctV@O. (3.6) 
We see that in the k-tO limit the solution (3.2) corresponds to the VP linearly growing 
with time. The particular solutions of such a kind have recently been discussed in [SI. 
For the pure current source (po= 0) the solution (3.2) has a trivial limit A = @ = 0. We 
know, on the other hand, that static current distributions exist outside for which 
H=E=O but AZO (e.g. cylindrical and toroidal solenoids). This VP cannot be 
eliminated by the gauge transformation since there are closed paths along which 
$AA,dl#O. This means that the non-trivial static solutions have been lost during the 
transition to the limit. 

3.1. Transition to the longwavelength limit 

We return to the initial equations (2.5), (2.10) and try to take this limit there. 
Equation (2.10) is transformed into 

j;? = r 'Yr . jo dV. I r-'-ly"" 
4z A = - E  
c 21+1 d'J' (3.7) 

Clearly, r'Y7 and r-'-'Y; are the vector solutions of the Laplace equation. They are 
eigenfunctions of L'. J z  and .Ix. We are interested in those vector solutions which are 
expressible in a form similar to (2.6). However, we cannot form from r'Y;? or r-'-'YT 
linear combinations similar to (2.12) since the terms with different 1 have different 
dimensions and there is no constant (such as the wavenumber in the non-static case) to 
make them-dimensionless. Since EVP (2.6) have the form which we seek, it is natural 
to develop them in powers of k 

AF(t) = k-'-'[AJ(t) + k2AB(r)] 

BF(z) = k"'[BJ(t) + k'B$(s)] t= L ,  E (3.8) 
AF(M) = k-'-'A;(M) BT(A4) =k's;;(M). 

The explicit values of the vector functions entering into the RHS of this equation are 
given in [15]. They are independent of k. The terms with higher powers of k do not 
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contribute in the long wave-length limit and they are omitted in the development 
(3.8).  The formfactors by(7) entering into the definition (2.5) of VP may be also 
dcvcloped in powers of k 

by(7) = k'-'[b;i(z) + kzb;l(z)] 7 = L , E  

b f ( M )  =k'b;i(M) b;i(7)=IBB*(z). jodV (3.9) 

r 

b;1(7) = B5*(7) - jo dV. J 
It follows from (2.5), (3.8) and (3.9) that the contributions of the E and L multipoles 
taken separately diverge in the long wavelength limit like !C2. On the other hand, the 
development (2.10) which is completely equivalent to (2.5) turns, in the same limit, 
into (3 .7) .  No singularities arise during this transition. This means that singularities of 
the E and L multipoles in (2.5) compensate each other. In fact, the singular term 
appearing in (2.5) is given by 

k-z(b;i(E)A;i(E) + b;i(L) .A;i(L)). 
It is easy to check that this equation vanishes when the exact values of A;i(z) and b 3 7 )  
are substituted into it. After these preliminaries we obtain the static limit of (2.5) 

(3.10) 

Here 
Dy(M) = (r X V)r'Y;' (3.11) 

d;"(z) = D;*(z) . j o .  dV. I c?(L1= Vr-'-'Yy Dy(L) = VdYY 

These are just expressions we need. The vector functions q ( z )  and Dy(t )  are the 
vector solutions of the Laplace equation. This is not evident for z= E. In fact, the 
particular terms entering into the definitions of Cy(E) and &'(E) do not satisfy the 
Laplace equation: only their linear combination does. In addition, Cy(.c) and W(7) 
satisfy the following equations: 

div C;"(E) = -2 .  (21- l)r-'-'YY div Dy(E) = 2 . (21+ 3)r'Y;" 

2 2(21+ 3 )  
rot Cy(E) = - - 1 (21 - l )C; (M)  rotDy(E)=-- 1+1 W(M) 

rot Cy(M) = lC;"(L) rot DY(M) = - ( I +  l )Dy(L) 

divC;"(M)=divW(M)=divCy(L)=divw(L)=rOt Cy(L)=rotw(L) =O. (3.12) 
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Like EVP they are orthogonal on the surface of the sphere. Taking into account the 
continuity equation (divj,= iwp,) we may transform dy(L) and d;"(E) into dy(L)  = 
-iw J r'r;*po dV and 

V x (r x V)r'+'Y;"* .io dV- iw rr+2Yy*pa dV. I dy(E) =- 1+1 'I 
This means that in the limit k+O 

As a result we have 
4iZ 1 1  A = __  __ - r - ~ - ~ c m  I (iM).lr 'Y?*(r-rot~]dV 
c 21+11(1+1) 

(3.13) 

It follows from this that H does not go beyond the space region S where j#O if J 
satisfies the condition 

(3.14) 

The same condition may be formulated on the magnetization language (j = c rot M). It 
turns out that H disappears outside S, if it is filled by the substance with divergence- 
free (divM=O) magnetization [16]. This fact is intuitively used by the experimental- 
ists [17]). 

3.2. The toroidal multipole moments 
Now we turn again to (2.12) and similar ones for Br(z) .  We develop both sides of 
these equations in powers of-k and compare the coefficients at the same power of k. 
For z= M we get from (2.12) 

r 1 rot j =  0. 

For z= E, L we compare the coefficients at k?' and k-' 

V r  I-' Yl = - - d = r - ' (  - 21+ 1 Yinr+i+ 2[+1- Y71-1)(21-1). (3.16) 

The two last equations may be reversed 

1 (3.17) 

l+l  
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For z = E,  L we equalize the coefficients at and I?" in the development of Bp(z): 

r'Y&+l=[(f+ 1)(21+3)]u1'2DR1(L) 

Reversing the two last equations we obtain 

r'+lY&l=- - 21+3 Zl+l (3.19) 

The first part of (3.18), when folded with the current density and integrated over the 
volume, gives 
r 

The integral in the RHS coincides with the so-called toroidal moment [7]. Then the 
integral in the LHS may be viewed as its alternative representation. If divj= 0 then the 
LHS is simplified: 

2-(21+3)lr 'Yp*(r*jQ)dV. 

Thus, a toroidal moment arises naturally as the coefficient at ,V*' in the development 
of electric formfactors. This removes the mystery of their origin. It follows from 
(3.15)-(3.19) that the expansion (3.10) is completely equivalent to the VSH one. The 
novelty is that we succeeded in presenting them in the differential form. From the 
vector identity 

rot(rxV)PY;"= -(a+ l ) V r " Y ~ + ( a - ~ ( a + l + l ) r r " - Z Y p  
we obtain for a = I  and a = - I -  1 

(3.20) 

It follows from this that there are vector functions that can be simultaneously 
presented as a curl and a gradient. 

Separate pieces of the VP expansion corresponding to the particular choices of the 
current density have been used elsewhere [6.18]. The expansion (3.10) permits one to 
solve the Poisson equation for an arbitrary stationary current. 



Laplace equation and helicity 2151 

t"' 

Figure 1. Poloidal current on the toms surface and the associated dipole toroidal moment. 

Concrete example. As an example illustrating the usefulness of the relations obtained 
consider the toroidal solenoid 

( p  - d)' + Z' = Rz (3.21) 

with the poloidal current in its winding (figure 1). It is convenient to introduce the 
coordinates& y: p = d + R c o s y , z = R * s i n y .  Then, the value R=Rcorresponds to 
the solenoid (3.21). The poloidal current is given by 

gc 6(R-R) 
J"=- -  

422 d + R cos y n*' 

Here g=2Nl/c, I is the current in a particular turn, N is the number of turns, ny) is the 
unit vector defining the current direction in a particular turn 
(nv= n, cos y(n, cos p + ny sin p) sin y). It is easy to see that rotJ  has only the p 
component and, thus, the condition (3.14) is satisfied. As 

ecd 6tR-R) 
' siny . V  rJ=- 

4z d+Rcos@ 

only the m=O component and odd values of 1 contribute to VP.  Putting I=2n + 1 we 
obtain 

1 1 R sin l/i 
A = - p d R V  2 - n + l  . P2.+ I(cos 8) ph+ 'P,,, (p j sin y dy . (3.22) 

Here p2=d2+R2+2dRcos?1, and P, is the Legendre polynomial. For the infinitely 
thin (R<<d) solenoid this reduces to 

1 (2n+1)!! d'"+l 
2". (n + I)! +"+- 4 A = - - z g R 2 V x  (-ly -7P,+,(cos 0); (3.23) 

These equations are valid outside the sphere of radius d+R.  Inside the sphere of 
radius d- R 
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for the finite TS and 

(3.25) 

for the infinitely thin one. We observe that VP is equal to the gradient of some function 
x. This function is different for r > d + R  and r<d-R.  This merely reflects the fact 
that the VP cannot be removed by the guage transformation (as $ A,df #O for the paths 
passing through the TS hole). The whole derivation of the VP expansion for TS has 
taken only half a page. This is due to the use of (3.10). In contrast, one may compare 
this with a many-page derivation in 1191. 

3.3 Non-static charge-current configuration 

We see that the expansion (3.10) includes the description of the usual magnetic 
solenoids. On the other hand (3.2), which defines the most general non-static VP with 
vanishing field strengths, becomes trivial in the k-tO limit. Here, it follows that there 
are no non-static charge-current configurations corresponding to the vanishing field 
strengths in the space surrounding them and reducing to the usual magnetic solenoids 
in the k-t 0 limit. 

The charge-current distributions confined inside S and satisfying the conditions 
(3.1) do not radiate because E=H=O outside S. On the other hand, it is possible to 
construct non-radiating systems with E ,  H#O outside S. This happens if the Poynting 
vector 

1 
P = (E X H )  

decreases faster than r -2 .  Consider the explicit expressions for the electromagnetic 
potentials 

Ao=- GxjodV' c 'I Qpo= Gkpo(r') dV' 

Gk = exp(iklr-r'l)/lr-r'l. 
I 

At large distance one has 

r 
' r  
=- exp(-ikn,r')po(r') dV' 

exp(-ikn,. r')jo(r') dV' 

E = E' = - ikn,W + ikA' H =  H' = ik(n, XA') .  (3.26) 

The terms of the order F2 and higher are omitted since they do not contribute to the 
energy flux. The radial component of the Poynting vector equals 

1 k2 1 
4nc 4nc 4nc 

S,=-( n, (E' x H ' ) )  = - (n,(A' X (A' X A) ) )  = - k2( IA'I2 - 1.4: 1') 
1 
- k?( IA 4nc + [ A  ; I2 ) .  
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It follows from this that the energy flux into the surrounding space vanishes if 
AL=A;=O. In a slightly different form these conditions have been obtained in [20], 
the particular realizations of such non-radiating systems may be found in [20,21]. 

4. Magnetic solenoids with non-zero helicity 

4.1 Cylindrical solenoids 

We consider first the cylindrical solenoid C of radius R. Let the current j =  
j .  6(p- R) flow on its surface. The corresponding VP is A = A  . no where A = 
@/Zzp outside C and @p/2nR2 inside it. The magnetic field differs from zero only 
inside C: H= n,@/nR2. Here @ is the magnetic flux inside C: @ =JJ H,p dp dg, = 
4dRZj. In the treated case the magnetic field and VP are mutually orthogonal, so 

S= A*HdV=O. (4.1) I 
The quantity S is called helicity [12 - 141. Thus, the usual cylindrical solenoid has zero 
helicity. Instead of the current J one may equally use the magnetization M: j =  c rot M. 
For the treated case 

M = M .  O(R-p). n, M = ,CRY. 

It is convenient to forget about the initial current and treat the solenoid as a cylinder 
uniformly magnetized along its symmetry axis. Let the magnetization M have g, 
component (in addition to the existing 2 one): 

M= M .  B(R -p)(n, .  cos a+n,-  sin a). (4.2) 
This means that magnetic lines twist around the co-axial cylindrical surfaceswhich are 
confined inside the initial cylindrical solenoid C. The non-vanishing components of VP 
and magnetic induction are 

A; = 4n(R -p) sin a .  M ~ 

BP=4nMsina , B,=4nMcosa 

A, = h M p  cos a 

inside the cylinder and 

A;=O A,= k R 2 M  cos alp B=O 

outside it. As a result, the helicity per unit of the cylinder length equals 

16 
3 

S=-n3MZsin 2a R3. 

What is important is that the cylindrical solenoid with non-zero helicity thus obtained 
consists exactly of the same magnetic limes as the original one (with zero helicity). 
Only their direction has been changed. The part '4' of the total magnetic flux @which 
threads the Z = constant plane now equals @' = @ . cos a. Particularly, a' = 0 for 
a=n/2, i.e. when all magnetic lines lie in the Z=constant plane.  in^ this case the 
cylindrical solenoid degenerates into the linear chain of toroidal dipole moments 
outside which the VP disappears. For O<a<n/2 the cylindrical solenoid may he 
viewed as the superposition of the dipole and toroidal moments distributed along the 
linear chains parallel to the 2 axis. 
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4.2. Digression on toroidal moments 

Likewise the circular current carries the magnetic dipole moment directed normally to 
the current plane, the poloidal current flowing on the torus suface (figure 1) carries the 
anapole [22] or toroidal [7] dipole magnetic moment R (TDM, for short). It is directed 
along the torus symmetry axis. The TDM is also generated by the closed chain of 
magnetic dipoles. Its interaction with an external magnetic field up to a constant is 
given by U - p , .  rotH. As outside the current sources rotH=E/c so 

1 .  
U - - E .  p,. 

C 

The existence of such an interaction was confirmed experimentally [23]. From this 
consideration it follows that a ‘toroidal compass’ measuring rot H ,  but not H itself, can 
be constructed. Its simplest realization is the ferromagnetic ring either installed on the 
platform having the rotational freedoms of motion (likewise the rotating disc in a 
usual gyroscope) or immersed into the imponderability (in the artificial satellite, in the 
insulator liquid). The axis of this ferromagnetic ring tends to be oriented along rot H .  
To obtain such a magnetic field, it is~enough to apply the time-dependent voltage to 
the plates of a usual capacitor. The time variation of the electric fieldE (which itself is 
normal to the capacitor’s plates) produces rot H( =E/c)  having the same direction as 
E.  Thus, the axis of the toroidal compass placed inside the capacitor tends to be 
oriented normally to the capacitor’s plates. A more sensitive toroidal compass having 
a smaller weight is obtained if we use the hollow torus with a poloidal winding on its 
surface. The torque exhibited by this compass is proportional to the number of tums 
in its winding and to the current strength in each particular turn. Special precautions 
should be made to get rid of the current toroidal component. A usual compass 
(magnetic needle) measures both potential and solenoidal components of H .  To 
separate their contributions, one should measure the magnetic field in the finite region 
of space. In contrast with this, the use of a toroidal compass permits one to detect the 
existence of a non-potential component of the magnetic field by performing only one 
measurement. The toroidal moments of higher multipolarities can be constructed 
[7,15] from TDM (likewise, the TDM itself is constructed from the usual magnetic 
dipoles). They interact with higher derivatives of the magnetic field. The VP generated 
by them decreases at large distances more rapidly than the VP of TDM (which falls as 
r-3) .  Outside the closed chain (or the infinite linear one) consisting of the usual 
magnetic dipoles, magnetic strength vanishes, but the VP differs from zero. Outside 
the closed chain (or the infinite linear one) composed of TDM both the magnetic 
strength and VP are equal to zero [lo, 151. Thus, this chain has a more pronounced 
self-screening (or ‘black box’) property than the chain composed of the usual magnetic 
dipoles. 

Let us study the electron scattering on the twisted cylindrical solenoid (by this we 
mean that the magnetization has the form (4.2), i.e. magnetic lines are twisted around 
the Z axis). The scattering cross-section is determined by the value of the integral 
$A,dl taken along the contour encircling the solenoid. It is equal to the part of the 
total magnetic field which threads the Z= constant plane, i.e. to cos a. This means 
that scattering cross-section will be a periodical function of the twisting angle a. For 
a = d 2  there is no VP outside the solenoid and, therefore, no scattering on it, i.e. the 
linear shielded chain of toroidal moments presents some kind of ‘black box’. 

Consider now two cylindrical samples manufactured of the same magnetic sub- 
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stance. We twist one of these samples (i.e. deform its magnetic lines according to 
(4.2)) and scatter the electrons on both of them. As the scattering cross-section 
depends on the twisting angle a, it is possible in principle to determine (except for the 
special combinations of @ and a)  which of the samples is twisted and which is not. 

4.3. Toroidal solenoids 

We turn now to the TS. It may be viewed as the set of magnetized filaments filling the 
torus T (p-d) '+r2= RZ. The magnetization and induction being expressed in the 
toroidal coordinates 

a sinhp a sin 6' 
z= 

'= coshp - cos 6' coshp - cos 6' 

(here p defines the particular torus while 6' and Q, run over its surface) are equal to 

coshp - COS 6' 
M=M.n,  B = 4nM M=Mo sinhp . 6'(lC-po) 

(d=a * cothpo, R=a/sinhp,). (4.3) 
The valuesp>po andp<p, correspond to the points lying inside and outside the torus 
T, respectively. The constant MO may be also expressed through the magnetic flux 
Mo=@P[(cothpo- 1)8n2a2]-*. For the infinitely thin TS and for Q, fixed, MO tends to 
infinity: MO-@ * exp(2po)/16nZaZ. The VP of TS has been obtained in [24] and its 
properties have been discussed in 1251. The non-vanishing toroidal components of VP 
are A, and Ae. It follows from this that TS with magnetization (4.3) possesses zero 
helicity. Let the magnetization M have the 6' component (in addition to the existing 91 
one) 

M =  M(n,. cos a + n e .  sin a) B = 4nM. (4.4) 
This means again that the magnetization lines are twisted along the toroidal surfaces 
(,uo<p<m) which are completely inside the torus T ( p = p , ) .  The 6' component ofM 
generates the Q, component of VP which is different from zero only inside T: 

P -PO sin 6' . sinh - 2 cosh p - cos 6' 
A,= -&MO. sin a .tan-' (4.5) sinhp p-puo' 

","-a cos 6' cosh - 2 cosh - - 2 

Such a solenoid may be viewed as a superposition of the magnetic dipole and toroidal 
dipole moments distributed along the closed circular chains lying in the Z=constant 
planes and imbedded into the torus T (for details see again in [lo, U]). This 
superposition reduces to the closed chain consisting of the usual magnetic dipoles for 
a = 0 and of the TDM for a = n/2. 

The p and 6' components of the VP are obtained from those found in [24] by 
multiplying them by the factor cosa. It follows from this that non-zero helicity 
corresponds to the magnetization (4.4). Since the VP components are rather compli- 
cated for the finite TS we limit ourselves to the infinitely thin one (R << d or Po>> 1). In 
this case, the following components of VP and the magnetic induction differ from zero 
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inside the TS 

A,=4naMo[exp(-p)-p, * cos 0 .  exp(-pa)] cos a 
A,=-8zaMo*exp(-po) -sins 

B ,  = 4Mfl COS a (4.6) 

S= A . B  dV=f 3Zdu4M?jsin2a exp(-3p,,). (4.7) 

BB = 4zM0 sin a. 
As a result, we obtain for the helicity: 

I 
The question arises: is it possible to get information on the helicity by performing 
experiments outside TS (which may be surrounded by the impenetrable torus)? We 
note that the 0 component of magnetization does not contribute to the w outside T. 
The wavefunction [26] describing the scattering of the charged particles on the 
impenetrable toroidal solenoid depends on its geometrical dimensions (d ,  R) and on 
the part CP' of the total magnetic flux @ which threads the q=constant plane of the 
solenoid (it is just this part of @ that generates the non-zero VP outside TS): 

7 )  = exp(ikz) + qJ 
i+Cose, ( ";-ER) 

exp ik- [exp(iw). W,-exp(iy-iw). W,]. 
2 qs=i 

Here 6, and r are the scattering angle and distance from the solenoid to the 
observation point, w = KdRlr, y =e@ cos alhe, W ,  and W2 are the linear combinations 
of the Lommel functions of two variables: 

,k (dfR)s in0  . 1 k(d f R)' 
r 

It follows from this that the intensity I =  is a periodical function of the angle a. 
Physically, this means that the change of the twisting angle a does not change the total 
magnetic flux but changes its component normal to the q=constant plane. As an 
integral $A,dl (which defines the AB scattering amplitude), taken along the contour 
passing through the TS hole, is equal to this component of flux, the dependence on the 
twisting angle a becomes evident. Consider two toroidal samples fabricated of the 
same magnetic substance. By cutting one of them, twisting it and reconnecting again 
we obtain the toroidal sample with non-zero helicity [14]. The same considerations as 
for the cyindrical solenoid show that twisted and non-twisted toroidal samples should 
exhibit different quantum-mechanical scattering. 

4.4. An alternative interpretation of the solenoids with non-zero helicity 

The usual explanation of non-zero helicity for TS composed of twisted magnetic lines 
proceeds as follows. Consider the torus with two magnetic lines winding on its surface. 
It is easy to see that after removing the torus we cannot decouple magnetic lines 
without cutting at least one of them. This suggests that these two magnetic lines form a 
non-trivial topological configuration. In fact, they correspond to non-zero helicity 
[14]. This remains valid for the continuum of the twisted magnetic lines filling the 
interior of the torus. The considered model of TS with non-zero helicity is of more 
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prosaic, less topological nature. It treats such a solenoid as the superposition of closed 
chains consisting of the usual magnetic dipoles and TDM. The magnetic flux and 
helicity S are the simplest representatives of the topological invariants, characterizing 
the structure of the static magnetic field and remaining the same for the arbitrary 
continuous deformation of the solenoids. There exist topological invariants different 
from and S [U], which describe more subtle features of the static magnetic field. 
The latter can also be described by using higher order toroidal moments. This 
parallelism suggests that there are two alternative (or equivalent?) languages for the 
description of static magnetic field. 

7. Conclusions 

We briefly summarize the main results obtained: 

(1) The vector solutions of the Laplace equation are presented in a convenient 
differential form. This makes easier the solution of various magnetostatic problems. 
The simplest applications of these solutions are &en. 

(2) The conditions are found under which the periodically changing with time 
charge and current densities do not radiate. 

(3) The electromagnetic properties of the toroidal solenoids with non-zero heli- 
city, the influence of the latter on the Aharonov-Bohm scattering and an alternative 
viewpoint on the toroidal solenoid with non-zero helicity are discussed. 
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Appendix 

The explicit form of equations (3.1) is 

j,YP*-(r-rotj]dV=O 

(-4.1) 
j,Yf*. (r .  rot rotj] dV=O. 

I 
I 

An arbitrary vector function and, particularly, the current density can be represented 
in the form (Helmholtz parametrization [ZS]) 

j =  VY, + rot(rYJ + rot(r x VYr) 

or, by rearranging the terms, 

j =  VYi+ (rx V)Y ;+rY j. 
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To find Y; one applies t o j  the div and rot operators 
d 
dr (r -51 =r-Y{ + r2Y: 

r2 divj= (rxV)’Y; +- (T(r -51) 

r . rotj= (rx V)2Y; 
r . rot ro t j=  - (r x V)W;. 

d 
dr 

As a result, the following equations are obtained for Y; 
d 
dr 

( r x V ) z Y [ = r 2 d i v j - - ( r ( r . j ) )  

(rx V)’”; = r . rot j 
(r x V)’Y; = - r . rot rot j .  

Consider the equation 
(r x V)*Y =f. 

(‘4.3) 

Its Green function 
1 

G(n, n’) = - Y;(n)YP*(n’) n = ( o , d  

satisfies the equation 
1 1 

sin 6 4z (rXV)’G(n, n’) =-6(e- 6’)6(p,+) 

Then, 

Y = G(n,  n’)f(r‘) dQ‘. (‘4.6) I 
The functions Y; are easily found if one substitutes the right-hand sides of (A.4) 
instead of f(r). By taking account of (A.4), the non-radiation conditions (A.l) take 
the form 

j,Y;*(rXV)’Y’;dV=O 

(‘4.7) 
jlY;*(r x V)’Y: dV=O. 

I 
I 

Or by integrating by parts 

I ([+ 1) jJY;*Yi dV=O 

( A 4  
I 
I Z(l+1) j,Yp*YY; dV=O. 

In addition to the trivial solutions r .rotj=O, r -  rot rotj=O (or, which is the same, 
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( r x  V)’Y;=O. ( r x  V)’Y;=O) equations (A.l), (A.2), (AS) have solutions corre- 
sponsing to the disappearance of integrals (but not the integrands) occurring there. 
This may take place for the definite values of the wavenumber k. The particular 
examples of non-radiating systems studied in [20,21] certainly meet the conditions 
(A.l), (A.7), (A.8). In deriving these equations it has been implicitly assumed that 
the space region lying outside S (where p,~’) is a simply connected one. Let this region 
be a multi-connected one. For example. let it coincide with the torus ( p -  d)’ + 2 = 
R2.  Then, for r > d + R  the non-radiation conditions are again (A.2). (A.7), (A.8). 
For r i d  - R the spherical Bessel functions should be replaced by the Neumann ones: 

n,Yr*(rx V)’Y;dV=O s 
,. 

Or by integrating by parts 

f(1+ 1) I nlYY*Y;dV=O 

r (A.lO) 
1(1+ 1) n,YY*Y’; dV=O. J 

It is very difficult to find non-static charge-current distributions for which equations 
(A.7), (A.8) and (A.9), (A: 10) are simultaneously fuffilled. 

Up to now. we have dealt with pure volume non-radiating charge-current distribu- 
tions. The situation changes if we take into account the surface (in addition to the 
volume) distributions. According to the generalized Green theorem (see, e.g., [29] or 
[30]) an arbitrary charge-current distribution (static or periodically changing with 
time) enclosed inside the volume V can be simulated by the electric charges, dipoles 
and currents properly distributed over the surface enclosing this volume. It immedia- 
tely follows from this [SI that it is possible to find surface distributions of charges and 
currents which completely compensate the electromagnetic field produced by the 
volume charge-current distribution (in fact, this is a usual electromagnetic shielding 
widely used by the experimentalists). The answer to the following question remains 
unclear to us: ‘Is it possible to find surface charge-current distributions that comple- 
tely compensate electromagnetic field strengths but not the potentials outside that 
surface?’ 

References 

[I] Rose M E 1955 Multipole Fields (New York Wiley) 
(21 MO% P M and Feshbach H 1953 Methods of Theoretical P h y s b  vol2 (New York McGraw Hill) 

Ch 13 
Jackson J D 1975 C[assical Eleclrodynamics (New York: Wiley) Ch 16 

[3] Belkic D 1992 Physica Scripta 45 9 
[4] Rennert P 1990 Ann der Physik 47 27 
[SI Blatt J M and Weisskopf V F 1952 Theoretical Nrrcleor Physics (New York: Wiley) Appendix B 
[6] Boston E R and Sanders P G H 1990 J. Phys. 5: Ar. Mol. Phys. 23 2663 
[7] Dubovik V M and Tugushev V V 1990 Phys. Rep. 187 145 



2160 G N Afanasieu 

[8] Miller M A 1984 Usp. Fiz. Nauk 142 147: 1986 hu. Vys. Uch. Zau., Radio& 29 391 
[9] Petuchov V R  1991 ITEP Preprints 105-91. 106-91 

[IO] Afanasiev G N 1993 3. Phys. A: Math. Gen. 26 731 
[Ill Ranada A F 1992 3. Phys. A: Math. Gen. 25 1621 
[12] Ranada A F 1992 Eur. 3. Phys. U 79 
[13] Moffat H K 1990 Nature 347 367 
[I41 Pfister H and Gekelman W 1991 Am. 3. Phys. 59 457 
[IS] Afanasiev G N 1993 Fiz. Elm. Chusfits AI. Yadra 24 512 
116) Afanasiev G N, Dubovik V M and Misicu S 1993 3. Phys. A: Math. Gen. 26 3279 
[I71 Tonomura A 1992 Ado. Phys. 41 59 
[18] Datta S 1984 Eur. 3. Phys. 1243 
[I91 Afanasiev G N and Dubovik V M 1992 3. Phys. A: Math. Gen. 25 4869 
[20] Meyer-Vernet N 1989 Am. 3. Phys. 57 1084 

Goedecke G 1964 Phys. Reo. B 135 281~ 
Pearle P 1977 Found. Phys. 1931 

[21] Abbott T A and Griffiths D J 1985 Am. 3. Phys. 53 1203 
Bohm D and Weinstein M 1948 Phys. Rev. 74 1789 

[22] Zeldovich Ya B 1958 Sou. Phys.JETP6 1184 
[U] Tolstoy N A and Spartakov A A 1990 Zh. E k p .  Teor. FU. Pis. Red. 51 796 
[XI Afanasiev G N 1987 1. Comput. Phys. 69 196 
[U] Afanasiev 0 N 1990 3. Phys. A: Malh. Gen. 23 5755 
1261 Afanasiev G N and Shilov V M 1993 3. Phys. A: Muth. Gen. 26 743 
[27] Berger M A 1990 .I. Phys. A :  Math. Gen. 23 2787 
[28] Elsasser W M 1946 Phys. Reo. 69 106 
[29] Stratton J A 1951 Elecrromugnetic Theory (New York: McGraw-Hill) ch 3,4,  8 
[30] Courant Rand Hilbert D 1962 Methods ofMathemufical Physics vol2 (New York: Interscience) ch 5 


